
Surface Tracing in 3D

Copyright © by V. Kovalevsky, last update: 2010-10-30

Let me know

what you think

 Depth First Search

 Euler Circuit

 Spiral Tracing

 Recognition of the Genus of the Surface

 Economical Hoop Code

 Filling the Interiors of Surfaces in 3D

The author has developed three algorithms for economical and exact encoding of surfaces in

3D spaces. He has compared them with the algorithm known as "Depth-First Search" of a

graph.

Depth-First Search

It is well-known that the set of the facets of a surface can be considered as a graph: facets are

the vertices and any two adjacent facets are connected by an edge of the graph. The aim of the

algorithm is to put all facets of the surface into a list. If a facet is adjacent to that previously

put into the list, then only the differences of coordinates are saved in the list. Otherwise

coordinates are saved. The algorithm starts with an arbitrary facet, puts it into the stack ("last

in first out") and starts a while-loop which is running while the stack is not empty. In the loop

a facet F is being popped form the stack. If it is not labeled as being already in the list then it

is put into the list and labeled.. Then all facets adjacent to F are put into the stack. This

algorithm is rather simple and fast, but it is not economical: It needs on an average 2.5 bytes

per facet even if sequences of adjacent facets are coded by differences of coordinates. The

sequences are mostly too short.

Euler Circuit

The author has developed an algorithm which finds the Euler circuit of the adjacency graph of

the facets. The algorithm uses a directed graph (digraph) with the aim to make the number of

edges as small as possible. The Euler circuit is a closed sequence of facets and the 0- or 1-

cells in between containing each 0- or 1-cell only once (a facet can be contained twice). The

Euler circuit can be encoded very economically by the differences of the coordinates of two

adjacent facets. Experiments have showed that this code needs on an average about 0.75 bytes

per facet.

file:///C:/Users/Kovalevski/Documents/Miszalok/Web20/Kovalevsky/Topology/L07_SurfaceTrace3D/SurfaceTrace3D_e.htm%23a1
file:///C:/Users/Kovalevski/Documents/Miszalok/Web20/Kovalevsky/Topology/L07_SurfaceTrace3D/SurfaceTrace3D_e.htm%23a2
file:///C:/Users/Kovalevski/Documents/Miszalok/Web20/Kovalevsky/Topology/L07_SurfaceTrace3D/SurfaceTrace3D_e.htm%23a3
file:///C:/Users/Kovalevski/Documents/Miszalok/Web20/Kovalevsky/Topology/L07_SurfaceTrace3D/SurfaceTrace3D_e.htm%23a4
file:///C:/Users/Kovalevski/Documents/Miszalok/Web20/Kovalevsky/Topology/L07_SurfaceTrace3D/SurfaceTrace3D_e.htm%23a5
file:///C:/Users/Kovalevski/Documents/Miszalok/Web20/Kovalevsky/Topology/L07_SurfaceTrace3D/SurfaceTrace3D_e.htm%23a6
mailto:prof@miszalok.de?subject=Kovalevsky%20Lectures

Digraph of the adjacencies in the surface of

a small cube

 Euler circuit of the surface of a small cube

Spiral Tracing

This algorithm takes an arbitrary facet of the surface S as a starting one and labels its closure.

This is the "germ-cell" of the set L of the labeled facets. The algorithm traces the opening

boundary (see lecture "Introduction") of L and labels all "simple" facets. A facet is simple if

the intersection of its boundary with the boundary of L is not empty and connected while the

intersection of its boundary with the complement of L is also not empty. The trace looks like a

spiral. This method is less efficient than that of Euler circuit: it needs between 1.0 and 2.0

bytes per facet depending on the number of tunnels in the surface. It is, however, interesting

since it defines the genus (number of tunnels) of the surface.

The idea of the tracing:

The set L of labeled simple facets remains

always topologically equivalent to a disk

(a 2-ball).

Example of tracing

Recognition of the Genus of the Surface

The set of simple facets (grey) composes

a topological disk (2-ball)

The set of remaining non-simple cells (white)

carries information about the genus.

Economical Hoop Code

This is the most economical method. It finds and traces facets lying in the boundary of a two-

dimensional slice of the body (solid line in the figure below). This boundary is called a

"hoop". Another "auxiliary hoop" (dashed line) is used for finding the starting facets of the

main hoops.

It is sufficient to save the coordinates of a single starting facet of a hoop. For all other facets

only the differences of their coordinates are encoded. The efficiency of this method is

between 0.21 and 0.5 byte per facet for bodies whose surface has no singularities. However,

for bodies with singular surfaces the efficiency can be rather bad. This is the main drawback

of this method.

Filling the Interiors of Surfaces in 3D

The algorithm is similar to that presented in Lecture 2 for filling interiors of curves in 2D. It is

necessary to label the facets (2-cells) of the given surface whose normals are parallel (or anti-

parallel) to one of the coordinate axes. Then the algorithms scans all rows of the grid, that are

parallel to the chosen axis, and counts the labeled facets. The filling begins at each odd count

and ends at each even count.

The surface The pseudo code

Choose a coordinate axis of the Cartesian space, e.g.

the X-axis.

Label all (n−1)-cells of M whose normal is parallel to

X.
for (each row R parallel to X)

{ fill=FALSE;

 for each n-cell C in the row R

 { if the 1st (n-1)-side of C is labeled

 fill = NOT fill;

 if (fill==TRUE) C = foreground;

 else C = background;

 }

}

If you are interested in theoretical details then read the lection "Axiomatic Digital Topology"

below.

 References

[1] V. Kovalevsky, A Topological Method of Surface Representation, In: Bertrand, G. et all

(eds.), Lecture Notes in Computer Science, vol. 1568, Springer 1999, pp. 118-135.

[2] V. Kovalevsky: Geometry of Locally Finite Spaces, Monograph, Berlin 2008.

