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The author has developed three algorithms for economical and exact encoding of surfaces in 

3D spaces. He has compared them with the algorithm known as "Depth-First Search" of a 

graph. 

Depth-First Search 

It is well-known that the set of the facets of a surface can be considered as a graph: facets are 

the vertices and any two adjacent facets are connected by an edge of the graph. The aim of the 

algorithm is to put all facets of the surface into a list. If a facet is adjacent to that previously 

put into the list, then only the differences of coordinates are saved in the list. Otherwise 

coordinates are saved. The algorithm starts with an arbitrary facet, puts it into the stack ("last 

in first out") and starts a while-loop which is running while the stack is not empty. In the loop 

a facet F is being popped form the stack. If it is not labeled as being already in the list then it 

is put into the list and labeled.. Then all facets adjacent to F are put into the stack. This 

algorithm is rather simple and fast, but it is not economical: It needs on an average 2.5 bytes 

per facet even if sequences of adjacent facets are coded by differences of coordinates. The 

sequences are mostly too short.  

Euler Circuit 

The author has developed an algorithm which finds the Euler circuit of the adjacency graph of 

the facets. The algorithm uses a directed graph (digraph) with the aim to make the number of 

edges as small as possible. The Euler circuit is a closed sequence of facets and the 0- or 1-

cells in between containing each 0- or 1-cell only once (a facet can be contained twice). The 

Euler circuit can be encoded very economically by the differences of the coordinates of two 

adjacent facets. Experiments have showed that this code needs on an average about 0.75 bytes 

per facet. 
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Digraph of the adjacencies in the surface of 

a small cube 
   

  Euler circuit of the surface of a small cube 

 

   

  

  

Spiral Tracing 

This algorithm takes an arbitrary facet of the surface S as a starting one and labels its closure. 

This is the "germ-cell" of the set L of the labeled facets. The algorithm traces the opening 

boundary (see lecture "Introduction") of L and labels all "simple" facets. A facet is simple if 

the intersection of its boundary with the boundary of L is not empty and connected while the 

intersection of its boundary with the complement of L is also not empty. The trace looks like a 

spiral. This method is less efficient than that of Euler circuit: it needs between 1.0 and 2.0 

bytes per facet depending on the number of tunnels in the surface. It is, however, interesting 

since it defines the genus (number of tunnels) of the surface.  

 

 

  

The idea of the tracing: 

 

The set L of labeled simple facets remains 

always topologically equivalent to a disk 

(a 2-ball). 

  



Example of tracing 

 

 

Recognition of the Genus of the Surface 

The set of simple facets (grey) composes  

a topological disk (2-ball) 
      

The set of remaining non-simple cells (white)  

carries information about the genus. 

 

      

 

Economical Hoop Code 

This is the most economical method. It finds and traces facets lying in the boundary of a two-

dimensional slice of the body (solid line in the figure below). This boundary is called a 

"hoop". Another "auxiliary hoop" (dashed line) is used for finding the starting facets of the 

main hoops. 

It is sufficient to save the coordinates of a single starting facet of a hoop. For all other facets 

only the differences of their coordinates are encoded. The efficiency of this method is 

between 0.21 and 0.5 byte per facet for bodies whose surface has no singularities. However, 

for bodies with singular surfaces the efficiency can be rather bad. This is the main drawback 

of this method. 

 

 



Filling the Interiors of Surfaces in 3D 

The algorithm is similar to that presented in Lecture 2 for filling interiors of curves in 2D. It is 

necessary to label the facets (2-cells) of the given surface whose normals are parallel (or anti-

parallel) to one of the coordinate axes. Then the algorithms scans all rows of the grid, that are 

parallel to the chosen axis, and counts the labeled facets. The filling begins at each odd count 

and ends at each even count. 

The surface The pseudo code 

 

Choose a coordinate axis of the Cartesian space, e.g. 

the X-axis. 

Label all (n−1)-cells of M whose normal is parallel to 

X.  
for ( each row R parallel to X ) 

{ fill=FALSE; 

  for each n-cell C in the row R  

  { if the 1st (n-1)-side of C is labeled  

      fill = NOT fill; 

    if ( fill==TRUE ) C = foreground; 

    else              C = background; 

  } 

} 

If you are interested in theoretical details then read the lection "Axiomatic Digital Topology" 

below.  
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